Online Linear Models for Edge Computing

Hadar Sivan¹, Moshe Gabel², Assaf Schuster¹

¹Technion – Israel Institute of Technology, ²University of Toronto

The Setting

- Stream of (occasionally) labeled samples
- Computationally limited device
- Maintain an updated model from the stream
- Can offload some model computations to the cloud
- Data distribution may change over time

Method and Tools

- **Theorem 1.** Let Δg be
 \[
 \Delta g := \sum_{i \in A} \nabla \ell_i(\beta^*_1) - \sum_{i \in R} \nabla \ell_i(\beta^*_1).
 \]
 Then:
 \[
 \|\beta^*_1 - \beta^*_2\| \leq 2\|r\|,
 \]
 where $r = \frac{1}{2} \left(\beta^*_1 - \frac{C_1}{C_2} \beta^*_1 + C_2 \Delta g \right)$.

Our Solution

DRUiD – Drift detectR from boUnded Distance

- Trades off a small number of batch model computations for better accuracy.
- Suitable for linear model with L_2-regularized convex differentiable loss.
- Supports both classification and regression tasks.

Monitors the **distance** between the **last batch-computed model** (β_1^*) and the **hypothetical model** that could be computed from the current position of the sliding window (β_2^*).

DRUiD Algorithm

For every new labeled sample:

1. Update the sliding window W
2. Update $\|r\|$ using Theorem 1
3. If $\|r\| > \text{Threshold}$, compute β_1^* from the samples in W

Prediction for a new sample x:

1. Return the prediction of β_1^* for x

Results on Real data

DRUiD achieves better tradeoff of accuracy vs number of computations than existing algorithms.

Results on Ill-Conditioned Problems

DRUiD’s batch mode performs well on ill-conditioned problems, while incremental algorithms perform poorly.