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THE SETTING
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METHOD AND TOOLS
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Bound the distance between the
optimal models of the first window,
β∗1 , and a second window, β∗2 , without
computing β∗2 .
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Theorem 1. Let ∆g be
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Then:
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L2-Regularized LR: r = C
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Ridge Regression: r = 1
4α
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OUR SOLUTION

DRUiD – Drift detectoR from boUnded Distance
• Trades off a small number of batch model computations for better

accuracy.

• Suitable for linear model with L2-regularized convex differentiable loss.

• Supports both classification and regression tasks.

Monitors the distance between the last batch-computed model
(β∗1) and the hypothetical model that could be computed from
the current position of the sliding window (β∗2).

DRUID ALGORITHM

For every new labeled sample:
1. Update the sliding window W

2. Update ‖r‖ using Theorem 1

3. If ‖r‖ > Threshold, compute β∗1
from the samples in W

Prediction for a new sample x:
1. Return the prediction of β∗1 for x

RESULTS ON REAL DATA

DRUiD achieves better tradeoff of accuracy vs number of
computations than existing algorithms.
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RESULTS ON ILL-CONDITIONED PROBLEMS

DRUiD’s batch mode performs well on ill-conditioned
problems, while incremental algorithms perform poorly.

0 101 102 103

num model computations

50

60

70

80

90

ac
cu

ra
cy

σ=1

Sine1+

0 101 102 103

num model computations

50

60

70

80

ac
cu

ra
cy

σ=10

Sine1+

DRUiD
PredSign

Sliding Win.
Incr. SGD

DDM
EDDM


