

# **ONLINE LINEAR MODELS FOR EDGE COMPUTING**



<u>HADAR SIVAN<sup>1</sup></u>, MOSHE GABEL<sup>2</sup>, ASSAF SCHUSTER<sup>1</sup>

<sup>1</sup>TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY, <sup>2</sup>UNIVERSITY OF TORONTO

## THE SETTING



### METHOD AND TOOLS



Bound the distance between the optimal models of the first window,  $\beta_1^*$ , and a second window,  $\beta_2^*$ , without computing  $\beta_2^*$ .

 $\beta^* = \arg\min_{\beta} C \sum_{i \in W} \ell(y_i, x_i^T \beta) + \frac{1}{2} \|\beta\|^2$ is an  $L_2$ -regularized model with loss  $\ell$ .





## **OUR SOLUTION**

# **DRUID – Drift detectoR from boUnded Distance**

- Trades off a small number of batch model computations for better accuracy.
- Suitable for linear model with  $L_2$ -regularized convex differentiable loss.
- Supports both classification and regression tasks.

Monitors the distance between the last batch-computed model  $(\beta_1^*)$  and the **hypothetical model** that could be computed from the current position of the sliding window  $(\beta_2^*)$ .

## **DRUID** ALGORITHM

For every new labeled sample:

1. Update the sliding window *W* 

2. Update ||r|| using Theorem 1

3. If ||r|| > Threshold, compute  $\beta_1^*$ from the samples in *W* 

**Prediction for a new sample** *x*:

1. Return the prediction of  $\beta_1^*$  for x

#### **RESULTS ON REAL DATA**

DRUiD achieves better tradeoff of accuracy vs number of

# **RESULTS ON ILL-CONDITIONED PROBLEMS**

DRUiD's batch mode performs well on ill-conditioned

