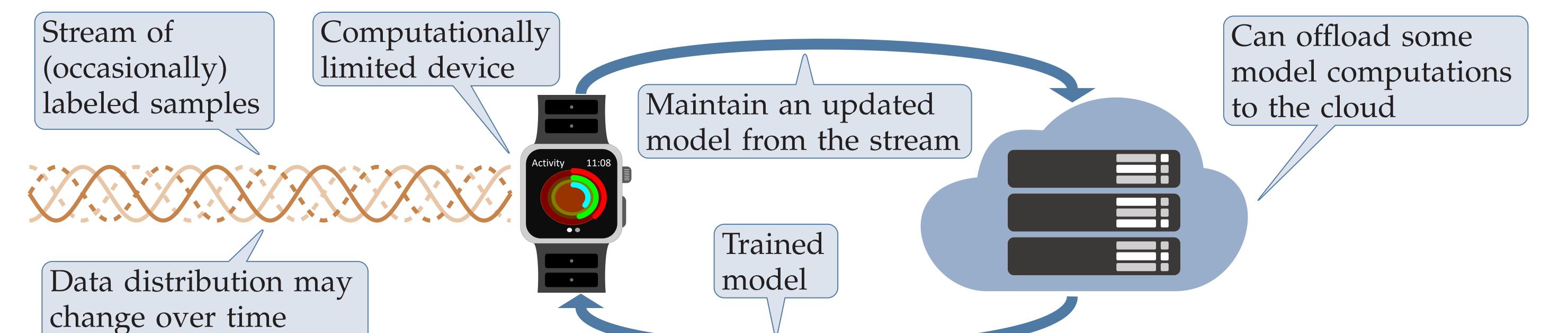


ONLINE LINEAR MODELS FOR EDGE COMPUTING

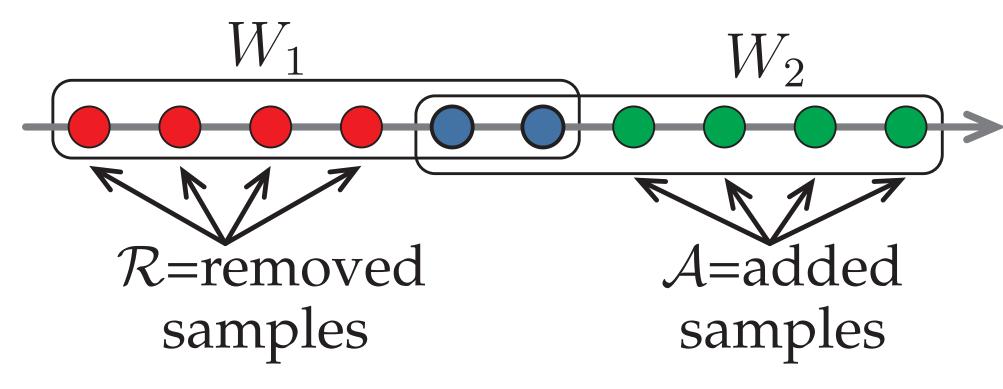
<u>HADAR SIVAN¹</u>, MOSHE GABEL², ASSAF SCHUSTER¹

¹TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY, ²UNIVERSITY OF TORONTO

THE SETTING

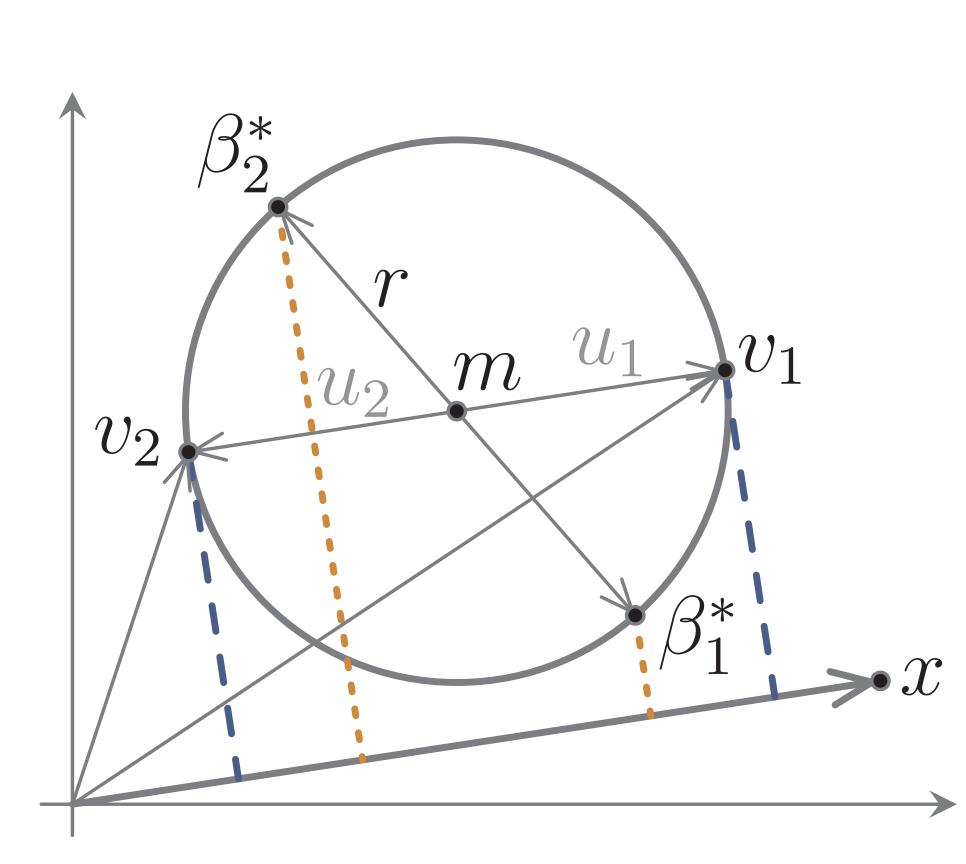


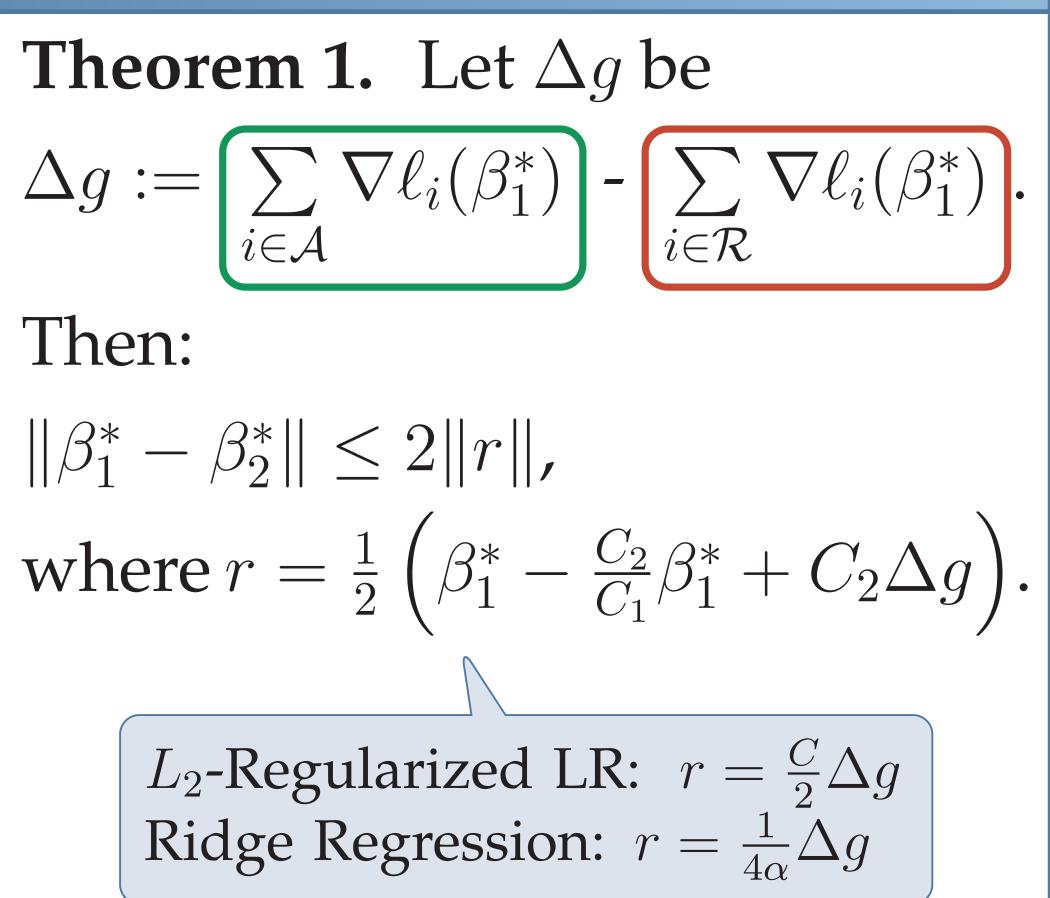
METHOD AND TOOLS



Bound the distance between the optimal models of the first window, β_1^* , and a second window, β_2^* , without computing β_2^* .

 $\beta^* = \arg\min_{\beta} C \sum_{i \in W} \ell(y_i, x_i^T \beta) + \frac{1}{2} \|\beta\|^2$ is an L_2 -regularized model with loss ℓ .





OUR SOLUTION

DRUID – Drift detectoR from boUnded Distance

- Trades off a small number of batch model computations for better accuracy.
- Suitable for linear model with L_2 -regularized convex differentiable loss.
- Supports both classification and regression tasks.

Monitors the distance between the last batch-computed model (β_1^*) and the **hypothetical model** that could be computed from the current position of the sliding window (β_2^*) .

DRUID ALGORITHM

For every new labeled sample:

1. Update the sliding window *W*

2. Update ||r|| using Theorem 1

3. If ||r|| > Threshold, compute β_1^* from the samples in *W*

Prediction for a new sample *x*:

1. Return the prediction of β_1^* for x

RESULTS ON REAL DATA

DRUiD achieves better tradeoff of accuracy vs number of

RESULTS ON ILL-CONDITIONED PROBLEMS

DRUiD's batch mode performs well on ill-conditioned

