
Incremental Sensitivity Analysis for Kernelized
Models

Hadar Sivan1(�), Moshe Gabel2, and Assaf Schuster1

1 Technion - Israel Institute of Technology, Haifa 3200, Israel
{hadarsivan,assaf}@cs.technion.ac.il
2 University of Toronto, Toronto, Canada

mgabel@cs.toronto.edu

Abstract. Despite their superior accuracy to simpler linear models, ker-
nelized models can be prohibitively expensive in applications where the
training set changes frequently, since training them is computationally
intensive. We provide bounds for the changes in a kernelized model when
its training set has changed, as well as bounds on the prediction of the
new hypothetical model on new data. Our bounds support any kernel-
ized model with L2 regularization and convex, differentiable loss. The
bounds can be computed incrementally as the data changes, much faster
than re-computing the model. We apply our bounds to three applica-
tions: active learning, leave-one-out cross-validation, and online learning
in the presence of concept drifts. We demonstrate empirically that the
bounds are tight, and that the proposed algorithms can reduce costly
model re-computations by up to 10 times, without harming accuracy.

1 Introduction

Supervised machine learning algorithms solve an optimization problem over a
given training set, a process called training. Kernelized machine learning models
are a common choice for handling non-linearity. However, training such models
i.e., finding the optimal solution for an optimization problem over a training set,
is often slow [31, 22], with run-time complexity being quadratic or cubic in the
size of the training set [1].

Such steep run-times can be prohibitive for applications that require frequent
retraining. For example, in leave-one-out cross-validation (LOOCV) we remove
one sample at a time from the original training set, train a model, then test it on
the removed sample. In active learning, we iteratively improve the training set by
selectively choosing samples to label and then retraining the model. Conversely,
in online learning, new samples arrive one by one, and are added to the training
set; the model is recomputed as needed.

Existing approaches to this problem reduce the run-time by using a previously-
computed model to speed up the computation of the next model, where the
training sets of the models are only slightly different. Examples of such an ap-
proach include incremental algorithms, which update the model one sample at
a time [3, 9, 18], and warm start approaches, which use the previous solution

2 H. Sivan et al.

when initializing numerical optimization [30]. However, the computational cost
of these algorithms is still very expensive reaching approximately O(m2) where
m is the number of support vectors.

A more efficient alternative is sensitivity analysis, which bounds the change
in the trained model or its predictions when the training set is changed, without
actually computing the new model. Since the change in the training set is usually
smaller than the size of the new training set, incremental bounds are efficient to
compute. To the best of out knowledge, existing work on sensitivity analysis is
limited to (a) linear models [24, 13, 10] rather than kernelized models, and (b)
to non-incremental bounds [29], which require computing over the full old and
new training sets, and do not bound the change in prediction.

Our Contributions

We first present a novel bound for the change in any kernelized model as the
training set changes, where this model is the solution for a kernelized machine
learning optimization problem with convex and differentiable loss and L2 reg-
ularization. Additionally, we derive bounds for the prediction of the updated
model on new data. Our bounds support any convex differentiable loss, do not
limit the change in the training set, and are applicable for both classification and
regression. Finally, we provide an efficient procedure for incrementally evaluating
the bounds as the training set changes, and analyze its runtime complexity.

We demonstrate our bounds in three different applications. First, we show
that our general bounds can reduce model computations in LOOCV by 45% to
77% for parameter tuning, improving on state-of-the-art bounds for this applica-
tion. Second, we provide a simple algorithm for active learning that learns faster
than the original algorithm using a fine-grained selection of future training data.
Third, we present an adaptive online learning algorithm that improves upon in-
cremental learning and concept drift detectors in terms of accuracy and number
of model computations by retraining models as needed. We also empirically test
the tightness of the bound for model change, showing that for 95% of the test
data the bound was no more than 1.2 times the actual change.

2 Background, Problem Definition, and Notations

Assume we have two datasets, S1 and S2, where S2 is more recent, for example S2
could be an updated version of S1. The datasets may overlap i.e., some samples
in S1 also appear in S2. We focus on bounding the distance between the optimal
solutions (i.e., models) for two identical learning problems over the two datasets
S1 and S2. Formally, each dataset is a collection of samples (xi, yi), where xi ∈ Rd
and yi ∈ {−1, 1} for classification problems or yi ∈ R for regression problems,
and we are interested in bounding the distance between the kernelized models
trained on S1 and S2.

In many classification problems the data is not linearly separable, while in
regression problems, the relationship between the predictors and the dependent

Incremental Sensitivity Analysis for Kernelized Models 3

variables is not always linear. In such cases, a feature map function Φ : Rd → H
can be applied to the samples to transform them from their original feature
space to a new feature space H, where the data separation (or relation between
variables) is closer to linear [14].

Because Φ(x) might be infinitely dimensional, the kernel trick [27] is com-
monly used instead of computing and storing Φ(x) directly. β ∈ H is a hypothesis
in a Reproducing Kernel Hilbert Space (RKHS) H with a positive definite kernel
function k : Rd×Rd → R implementing the inner product 〈·, ·〉. The inner prod-
uct is defined so that it satisfies the reproducing property 〈k(x, ·), β〉 = β(x).
For simplicity, we use the compact notation Φ(x) for k(x, ·). The reproducing
property of k implies in particular that k(x, x′) = 〈Φ(x), Φ(x′)〉.

The models β∗1 and β∗2 are the optimal solutions for the following optimization
problems over the samples in the two datasets1:

β∗1 = arg min
β∈H

C1

∑
i∈D1

`i(β) +
1

2
‖β‖2 (1a)

β∗2 = arg min
β∈H

C2

∑
i∈D2

`i(β) +
1

2
‖β‖2 (1b)

for C1, C2 > 0, where D1 and D2 denote the set of indices of the samples in
S1 and S2, respectively. The loss with respect to sample (xi, yi) is defined by
`i(β) := `(yi, zi), where zi := 〈Φ(xi), β〉 is the inner product between xi and β.
In this paper we focus on loss function `(·, ·) which is differentiable and convex
function with respect to its second argument.

By the Representer theorem [29], if β∗1 is the solution of (1a), it can be
expressed as the dual form:

β∗1 =
∑
i∈D1

αiΦ(xi) (2)

The coefficients αi are obtained by solving the dual problem of (1a).
We also focus on bounding the prediction of the model β∗2 for a new sample x.

The prediction of a model β∗ for classification is ŷ = sgn (〈Φ(x), β∗〉), while for
regression the prediction is ŷ = 〈Φ(x), β∗〉. For example, predictions for model
β∗1 can be computed by using the kernel trick: 〈Φ(x), β∗1〉 =

∑
i∈D1

αik(xi, x).

3 Bounding Model Differences

This section details our main contributions. We first develop a distance bound
– a bound that estimates the difference between the two models β∗1 and β∗2 ,
without actually computing β∗2 . We then extend it to prediction bounds which
bound the predictions of β∗2 on new samples. Finally, we describe an incremental
update scheme for the bounds. In Section 4 we show how using the bounds can
significantly reduce number of model computations in different applications.

1 Given an objective function of the form a
∑
i∈D `i(β) + b‖β‖2, choosing C = a

2b
will

bring it to the standard form (1).

4 H. Sivan et al.

3.1 Bounding the Distance Between Models

Let β∗1 and β∗2 be the models trained on the samples in the datasets S1 and
S2. We define the difference between the two models as the Euclidean distance
between the two model vectors: ‖β∗1 − β∗2‖. We propose a bound for this distance
that can be evaluated without computing β∗2 .

Theorem 1 (Distance Bound). Let β∗1 be the optimal solution in its dual
form (2) of the optimization problem (1a) over the dataset S1 containing the
labeled samples with indices D1. Let β∗2 be the optimal solution of the optimization
problem (1b) over the updated dataset S2 containing the labeled samples with
indices D2. Let DA = D2 \ D1 be the set of indices of samples added in S2 and
DR = D1 \ D2 be the set of indices of samples removed in S2. Finally, let I be
the indicator function and define γi := (−1)I{i∈DR}∂zi`i(β

∗
1), where ∂zi`i(β

∗
1) is

the partial derivative of `i with respect to zi at the point β∗1 .
Then the distance between β∗1 and β∗2 is bounded by:

‖β∗1 − β∗2‖ ≤ 2‖r‖,

where

r =
∑

i∈D1∪D2

τiΦ(xi) (3)

and the coefficients τi are:

τi =


1
2 (1− C2

C1
)αi + C2

2 γi, i ∈ DR
1
2 (1− C2

C1
)αi, i ∈ D1 ∩ D2

C2

2 γi, i ∈ DA .

Discussion Theorem 1 bounds the difference between computed models for any
convex differentiable loss, given the difference in their training sets. For exam-
ple, we can apply Theorem 1 to L2-regularized logistic regression, as defined in
Table 1, C1 = C2 = C. In this case, τi = C

2 γi for i ∈ DA ∪ DR and 0 otherwise.

Assigning this in (3) gives r =
∑
i∈DA∪DR

C
2 γiΦ(xi). For L2-regularized MSE

loss, the constants C1 and C2 depend on the number of samples in the dataset;
thus they may differ if the size of the datasets S1 and S2 is different. Table 1
shows how to compute r and γi for three common optimization problems. Note
that αi are the coefficients in the dual form of β∗1 and C1, C2 are determined by
the objective function.

Proof. Let ∆g be

∆g :=
∑
i∈DA

∇β`i(β∗1)−
∑
i∈DR

∇β`i(β∗1).

By applying the chain rule for ∇β`i(β∗1) we get:

∇β`i(β∗1) = ∂zi`i(β
∗
1)∇βzi(β∗1) = ∂zi`i(β

∗
1)Φ(xi)

Incremental Sensitivity Analysis for Kernelized Models 5

Table 1. Objective functions, losses, gradients, and associated bound parameter r.
zi = 〈Φ(xi), β〉 can be computed using the kernel trick, and γi = (−1)I{i∈DR}∂zi`i(β

∗
1).

Model and Loss `i Objective Function ∂zi`i(β) r

Logistic Regression
log (1 + exp(−yizi))

C
∑
i

`i + 1
2
‖β‖2 −yi/ (1 + exp(yizi))

∑
i∈DA∪DR

C
2
γiΦ(xi)

Squared Hinge SVM

(max{0, 1− yizi})2
C
∑
i

`i + 1
2
‖β‖2 −2yi max{0, 1− yizi}

∑
i∈DA∪DR

C
2
γiΦ(xi)

Ridge Regression

(yi − zi)2
∑
i

`i + λ‖β‖2 −2(yi − zi)
∑

i∈DA∪DR

1
4λ
γiΦ(xi)

We use this in the definition of ∆g:

∆g ,
∑
i∈DA

∇β`i(β∗1)−
∑
i∈DR

∇β`i(β∗1)

=
∑

i∈DA∪DR

(−1)I{i∈DR}∂zi`i(β
∗
1)︸ ︷︷ ︸

,γi

Φ(xi)

=
∑

i∈DA∪DR

γiΦ(xi), (4)

Note that ∂zi`i(β) is a scalar function with arguments yi, zi, which are also
scalars. The computation of zi at the point β∗1 is done with the kernel trick:
zi =

∑
j∈D1

αjk(xj , xi). Thus, γi can be computed using the kernel trick.
We can now use this kernelized form of ∆g in the non-kernelized form of r

from our previous work. In [28] we proved that under the same conditions as in
Theorem 1, but for linear models β∗1 , β

∗
2

r =
1

2

(
β∗1 −

C2

C1
β∗1 + C2∆g

)
(5)

For completeness, we repeat some of the main steps from the original proof [28].
The proof proceeds in three steps:
(i) Use the convexity of the objective function to get a sphere Ω that con-

tains β∗2 . The sphere Ω has center m = β∗1 − r and radius vector r =
1
2

(
β∗1 + C2

∑
i∈D2

∇β`i(β∗1)
)
.

(ii) Use the convexity of the objective function to express the sphere’s radius as
a function of ∆g, and get (5).

(iii) Bound the distance between β∗1 and β∗2 using geometric arguments. We ob-
serve that β∗1 is on the surface of the sphere Ω and β∗2 is contained within
the sphere. This implies that the maximum distance between β∗1 and β∗2 is
obtained when β∗1 and β∗2 are at two opposite sides of the sphere’s diameter,
which has length 2‖r‖. This yields the linear form bound in Theorem 1.
Note that this result cannot be applied directly for kernelized models: (5)

cannot be evaluated for infinitely dimensional Φ such as the RBF kernel. To

6 H. Sivan et al.

complete the proof for kernelized models, we show that the bound could be
computed with the kernel trick when map function Φ is used on the data samples.
We use the dual form of β∗1 (2) and the kernel form of ∆g (4) in r (5):

r =
1

2

(
β∗1 −

C2

C1
β∗1 + C2∆g

)
=

1

2

(
1− C2

C1

) ∑
i∈D1

αiΦ(xi) +
C2

2

∑
i∈DA∪DR

γiΦ(xi) =
∑

i∈D1∪D2

τiΦ(xi) .

The bound is then computed with the kernel trick:

2‖r‖ = 2

√ ∑
i∈D1∪D2

∑
j∈D1∪D2

τiτjk(xi, xj) , (6)

which completes the proof. ut

3.2 Bounding the Predictions of the New Model

We describe upper and lower bounds for the prediction of β∗2 for a new sample2.
As before, using the predictions of β∗1 we can compute these bounds without
computing β∗2 .

Using the observation from Section 3.1 that β∗2 is within a sphere Ω with
center m and radius vector r, we can obtain lower and upper bounds for applying
β∗2 to a new sample x:

Lemma 1 (Prediction Bounds). Let β∗1 , β∗2 , and r be as in Theorem 1, and
let x be a sample. Then the upper and lower bounds on the prediction of β∗2 for
x are:

L (〈Φ(x), β∗2〉) =〈Φ(x), β∗1〉 − 〈Φ(x), r〉 − ‖Φ(x)‖‖r‖ (7a)

U (〈Φ(x), β∗2〉) =〈Φ(x), β∗1〉 − 〈Φ(x), r〉+ ‖Φ(x)‖‖r‖. (7b)

Proof. Every vector β in the sphere Ω can be represented as the sum of two
vectors: the center of the sphere m, and an offset vector u that starts from the
center of the sphere and whose magnitude is bounded by the sphere radius vector
(‖u‖ ≤ ‖r‖). Therefore, the dot product between β and a given Φ(x) is

〈Φ(x), β〉 =〈Φ(x), (m+ u)〉 = 〈Φ(x),m〉+ 〈Φ(x), u〉
=〈Φ(x),m〉+ ‖Φ(x)‖‖u‖ cos (∠(Φ(x), u)) .

The minimum of the dot product 〈Φ(x), β〉, with respect to u, is obtained when
‖u‖ = ‖r‖ and cos (∠(Φ(x), u)) = −1. In other words, u is a vector in the opposite

2 Our previous work [28] includes similar bounds for linear models, but only provides
a sketch of the proof. Here we provide bounds and the full proof for both kernelized
and linear models.

Incremental Sensitivity Analysis for Kernelized Models 7

direction of Φ(x) and with the maximum magnitude under the constraint that
u is on the sphere. In this case, the lower bound is obtained, L (〈Φ(x), β∗2〉) =
〈Φ(x),m〉−‖Φ(x)‖‖r‖. Using similar arguments, the maximum of the dot product
〈Φ(x), β〉 is obtained when ‖u‖ = ‖r‖ and cos (∠(Φ(x), u)) = 1. This time u
is in the same direction as Φ(x). In this case, the upper bound is obtained,
U (〈Φ(x), β∗2〉) = 〈Φ(x),m〉 + ‖Φ(x)‖‖r‖. By substituting m = β∗1 − r (from the
definition of Ω in Section 3.1) in the above expressions for L and U , we obtain
(7). The computation of 〈Φ(x), β∗1〉 is done with the kernel trick, 〈Φ(x), β∗1〉 =∑
i∈D1

αik(xi, x). We now use the dual form of r (3) and get

〈Φ(x), r〉 =
∑

i∈D1∪D2

τik(xi, x). (8)

Finally, using (8), (6), and ‖Φ(x)‖ =
√
k(x, x) we obtain that all the elements

in (7) can be computed using the kernel trick. ut

3.3 Updating the Bounds Incrementally

Many applications require evaluating the bounds repeatedly (Section 4). We pro-
vide incremental update procedures for every sample that is added or removed
from the training set, and show that when computed incrementally, the runtime
of updating and evaluating our bounds is linear in the number of training exam-
ples. This compares favorably to the quadratic to cubic complexity of non-linear
SVM solvers [1].

Any algorithm that uses the distance bound (Theorem 1) or the prediction
bounds (7) can update the ‖r‖ part in the bound incrementally when a sample is
added to or removed from S1 and S2. We limit the discussion of this incremental
update and its computational complexity to the common case where C = C1 =
C2, as in Table 1. In this case:

‖r‖2 =
C2

4

∑
i∈DA∪DR

∑
j∈DA∪DR

γiγjk(xi, xj) (9)

〈Φ(x), r〉 =
C

2

∑
i∈DA∪DR

γik(xi, x) , (10)

since τi = C
2 γi for i ∈ DA ∪ DR and 0 otherwise. For every sample index

i ∈ DA ∪ DR let

Ki :=
C2

4

 ∑
j∈DA∪DR

j 6=i

2γiγjk(xi, xj) + γ2i k(xi, xi)

 .

Let A = S2 \ S1 be the set of samples added in S2 and let R = S1 \ S2 be the

set of samples removed from S1. To update ‖r‖2 with a new sample (xi, yi), the

8 H. Sivan et al.

1.0 1.1 1.2 1.3

Tightness T (i)

0.0

0.5

1.0

C
D

F
k = n

k = n/10

k = n/50

(a) Sonar

1.0 1.1 1.2 1.3

Tightness T (i)

0.0

0.5

1.0

C
D

F

k = n

k = n/10

k = n/50

(b) German Numer

1.0 1.1 1.2 1.3

Tightness T (i)

0.0

0.5

1.0

C
D

F

k = n

k = n/10

k = n/50

(c) Splice

Fig. 1. Tightness of the distance bound. For more than 95% of the iterations, for every
k value, the bound is less than 1.2 times the real distance between models.

sample is first added to A or R; then this sample’s Ki is computed and added to
‖r‖2. If the sample is removed, Ki is first computed and subtracted from ‖r‖2.
Only then is the sample removed from A or R.

Computing Ki requires computing γi, which has complexity O(n1d), where
n1 = |S1| is the number of samples in S1, since a single kernel function evaluation
is O(d) and there are at most n1 support vectors in β∗1 dual form. The complexity
of computing

∑
j∈DA∪DR γjk(xi, xj) is O((|A|+ |R|)d). Given that |R| ≤ n1, we

have that the computation complexity of updating ‖r‖ when a single sample is
added or removed from either A orR is O ((n1 + |A|) d). Similarly, given ‖r‖, the
runtime complexity of computing the prediction bounds (7) is O ((n1 + |A|) d),
since it requires evaluating 〈Φ(x), β∗1〉 and 〈Φ(x), r〉 using (10).

4 Evaluation

In this section, we empirically evaluate the tightness of the distance bound. We
also demonstrate the use of the bounds from Section 3 for specific applications by
presenting improved variants of common algorithms. For clarity, we purposefully
use simple algorithms. For example, in active learning we use only the mid-
point of the upper and lower bounds and always select the same number of
samples, while the online learning algorithm uses a static threshold T . We leave
the detailed exploration and evaluation of improvements for these algorithms to
future work. We used L2 regularized squared hinge-loss (differentiable variant of

SVM, Table 1) as the objective function with an RBF kernel exp(−γ‖x− x′‖2)
across all experiments. We used CVXPY [5] to solve the optimization problem.

4.1 Bound Tightness

We empirically evaluate the tightness of the distance bound (Theorem 1) by
comparing the bound to the real distance between the models when we remove
1, 10, and 50 samples. Given a dataset of size n, we first train a model β∗1 on the
full dataset. We then divide the dataset into k folds, where k ∈ {n, n/10, n/50}.
In iteration i we exclude the ith fold from the full training set, compute a model

Incremental Sensitivity Analysis for Kernelized Models 9

β∗2(i), and evaluate the bound 2‖ri‖. The tightness of the bounds for the samples
in fold i, T (i), is defined as the ratio of the bound to the true difference between

the models: T (i) = 2‖ri‖
‖β∗1−β∗2 (i)‖

. The closer T (i) is to 1, the tighter the bound.

We repeated this experiment for different datasets using an RBF kernel with
γ = 1, C = 1. Figure 1 shows the CDFs of T (i) for three datasets from the
LIBSVM [4] dataset repository: Sonar with n = 208, German Numer and Splice
with n = 1000. For more than 95% of the iterations the bound is less than
1.2 times the real distance between models, indicating that the bound is tight.
Results on other datasets in Table 2 are similar, where for large datasets we
randomly selected 1000 samples for the test. We repeated the experiment with
C ∈ [0.001, 100]. Tightness is better with lower C, but remains below 1.2 for
95% of iterations across the range of C.

4.2 Accelerated LOOCV

Leave-one-out cross-validation (LOOCV) is sometimes used for model selection
or to evaluate the generalization error of a model β∗ computed from the entire
training set of size n. LOOCV works by iterating over the training set: in itera-
tion t, the sample (xt, yt) is removed and a new model β∗t is computed from the
remaining n − 1 samples. The model β∗t is then used to predict the sample xt,
and these predictions are then aggregated. Although especially useful for small
datasets or when low estimation bias is desired [23, 36], LOOCV is computation-
ally expensive since it requires training n models. This is particularly true for
non-linear models, which take longer to train than linear models.

We follow the procedure proposed by Okumura et al. [24] for linear mod-
els. Rather than computing a new model for each removed sample, we use the
prediction bounds (7) to predict the class of the sample xt in the LOOCV
process. We first compute a model β∗ for all samples. Then, for every sam-
ple t, rather than computing the model β∗t , we evaluate the upper and lower
bounds (7) based on the original model β∗ and the removed sample: β∗1 =
β∗, β∗2 = β∗t , R = {(xt, yt)}, and A = ∅. Note, the overlap between the
models β∗ and β∗t is n − 1 samples. Assignment in (7) gives the lower bound
L = 〈Φ(x), β∗〉 − C

2 γtK(xt, xt) − C
2 |γt|K(xt, xt), and the upper bound U =

〈Φ(x), β∗〉 − C
2 γtK(xt, xt) + C

2 |γt|K(xt, xt). If the signs of the bounds are the
same, the classification of β∗ for xt is known and we can avoid computing β∗t .

We compared our bounds to the bounds of Zhang [35], who proved that
‖〈Φ(xt), β

∗
t 〉 − 〈Φ(xt), β

∗〉‖ ≤ |αt|K(xt, xt), where αt is the coefficient of xt in
the dual form of β∗ (2). From this bound, we obtain upper and lower bounds
for the prediction of β∗t : 〈Φ(xt), β

∗〉−|αt|K(xt, xt) ≤ 〈Φ(xt), β
∗
t 〉 ≤ 〈Φ(xt), β

∗〉+
|αt|K(xt, xt). Thus, the lower bound for the prediction of β∗t is 〈Φ(xt), β

∗〉 −
|αt|K(xt, xt) and the upper bound is 〈Φ(xt), β

∗〉+ |αt|K(xt, xt).
Table 2 shows the results of using the bounds for LOOCV on seven different

datasets from the LIBSVM [4] and the UCI dataset repositories [6]. For each
dataset, we ran LOOCV five times to tune the γ parameter, selected from the
values γ ∈ {0.001, 0.01, 0.1, 1, 10}. We measured the average percentage of the

10 H. Sivan et al.

Table 2. Datasets and percentage of models computed for LOOCV.

Dataset: Sonar Breast cancer Splice German numer w5a EEG eye state a7a

n 208 569 1000 1000 9888 14980 16100
d 60 30 60 24 300 13 123
Zhang % 55.19 55.50 60.06 57.02 23.26 46.98 40.74
Our % 47.21 48.86 55.36 46.32 22.50 40.48 31.49

iterations in which the bounds disagree on the sign, over the five LOOCV runs.
This is the percentage of iterations that required computing β∗t .

We observe that the bounds reduce model computations by two to four times.
This translates into significant resource savings. For example, solving the opti-
mization problem for the w5a dataset on an Intel i7-7820HQ CPU running at 2.9
GHz takes 436 seconds. By avoiding model computations in 7663 LOOCV itera-
tions on average in each run, the use of bounds saved over 193 days of compute
time compared to standard LOOCV.

Furthermore, our bounds improve on previous work on LOOCV [35] in two
ways. Empirically, they train fewer models across all tested datasets. Moreover,
our bounds apply even when more than one sample is removed, and can therefore
be used for k-fold cross-validation. We leave such improvements for future work.

4.3 Fine-Grained Active Learning

In pool-based active learning, we are given an unlabeled dataset S of size n. We
can ask for the label for any sample in the dataset and must make use of a
limited budget for labeling.

The classic active learning algorithm (AL) begins with an initial model β∗1 ,
often trained on a small initial set of labeled samples. The algorithm iteratively
improves the model by choosing more and more samples from the dataset. At
each iteration t, the algorithm chooses a cohort of m previously unlabeled sam-
ples to be labeled and added to the labeled samples set; then, the model β∗t+1

is computed from all the labeled samples. The choice of which samples to add
at every iteration is key. If samples are chosen wisely, the model can become
accurate using fewer samples. A typical choice is the m samples that the current
model is least certain about (〈Φ(x), β∗t 〉 closest to 0), since they are more likely
to be misclassified.

While a smaller cohort m might be preferable, this comes at a cost of addi-
tional iterations, hence more model computations. We now describe FGAL (for
Fine Grained Active Learner), a variant of the classic AL algorithm that uses
the prediction bounds to achieve a smaller cohort without the additional cost.

FGAL divides each standard AL iteration into m/p sub-iterations. It starts
each iteration t with empty sets of the added and removed samples (A and
R). In every sub-iteration i, FGAL computes the prediction bounds for all the
remaining unlabeled samples and chooses the ones that are more likely to be
the closest to the separating hyperplane as the next p samples to label. FGAL

Incremental Sensitivity Analysis for Kernelized Models 11

5 15 25 35 45 55 65
% data in training set

65
70
75
80
85

ac
cu

ra
cy

AL (m=10)
AL (m=100)
FGAL

(a) Splice

5 15 25 35 45 55 65
% data in training set

62
64
66
68
70
72

ac
cu

ra
cy

AL (m=10)
AL (m=100)
FGAL

(b) German Numer

Fig. 2. Average model accuracy as a function of the training set size of the model.
Each point represents 5 experiments with different seeds; the vertical lines represent the
standard deviation. FGAL learns faster, achieving better accuracy with fewer samples.

chooses the samples with the lowest value for |(U + L)/2|, where U,L are the
prediction bounds (7) of these samples (we leave exploring alternatives for future
work). It then adds these samples to A and the process continues until m samples
are chosen. Note, the first p samples in each iteration are chosen according to the
prediction of the model from the last iteration, since U = L = 〈Φ(x), β∗t 〉 when
A = R = ∅. In practice, an efficient implementation can incrementally update
‖r‖, as explained in Section 3.3, every time p samples are labeled. We update
the model only at the end of the iteration, after m samples were chosen.

We empirically compared FGAL to standard Active Learning (AL) with same
m, and to another AL instance with m = p. In our experiments, m = 100 and
p = 10, with an initial labeled set of 50 randomly selected samples. We ran the
experiments over two datasets from the LIBSVM dataset repository [4]: Splice
with n = 1000 samples and d = 60 attributes, and the scaled version of German
Numer with n = 1000 and d = 24. We used an RBF kernel with γ = 0.1, C = 1
for Splice and γ = 0.5, C = 1 for German Numer. We randomly selected 350
samples as a test set, and repeated each run 5 times with different random seeds.

Figure 2 shows the accuracy on the test set of all the algorithms after each
iteration. We observe that FGAL achieves faster learning than AL(m = 100)
using the same model computation budget. AL must select m = 100 samples
without considering new information, while FGAL is able to incorporate infor-
mation from each p = 10 samples during the sub-iteration. Alternatively, we
can view FGAL as achieving similar learning performance as AL using a much
smaller computational budget: FGAL’s performance with m = 100 and p = 10
on the datasets is equivalent to that of AL with m = 10 using only 10% of the
model computations. Finally, for FGAL and AL(m = 10), the accuracy over the
test set drops at the final iteration, possibly due to overfitting or label noise. If
accuracy on the test set is the criteria, FGAL is able to achieve higher accuracy
than AL(m = 100).

12 H. Sivan et al.

4.4 Adaptive Online Learning

Consider an online learning application where samples are presented to the al-
gorithm one by one: at time t the application is presented with the sample
(xt, yt). Computing a new model every time a sample is added is wasteful since
the underlying concept may have not changed. While incremental algorithms
for kernelized models do exist [19, 25, 34], their performance can be sub-optimal
due to strong reliance on individual samples and susceptibility to ill-conditioned
problems [2, p. 467]. Instead, we propose an algorithm that can reduce com-
putations while maintaining accurate models. The algorithm uses the distance
bound to determine when the model has changed and should be re-computed.

We present KDR (for Kernelized Drift detectoR), a sliding window algo-
rithm that uses the distance bound (Theorem 1) to trade off a small number of
batch model computations for better accuracy when learning a classification or
regression model over a data stream with concept drifts. When the difference
‖β∗1 − β∗2‖ is too large, where β∗1 is the existing model and β∗2 is the hypothetical
updated model, KDR re-computes β∗1 . We describe KDR in detail below.

When a new sample (xt, yt) arrives, we incrementally update ‖r‖ as described
in Section 3.3. Note the window size is fixed, hence C = C1 = C2. We first add
the new sample to A and then increment ‖r‖2 by Kt. Let (xr, yr) be the oldest
sample in W . If the current window W overlaps with W1 (the window at the time
of β∗1 computation), then (xr, yr) came from W1. We therefore first add it to the

removed sample set R and then add Kr to ‖r‖2. Otherwise, (xr, yr) was never

part of W1, so we first subtract Kr from ‖r‖2 and then remove (xr, yr) from
A (no change to R). Along with the samples, we also store their γ coefficients
in A and R. Finally, we update the sliding window W by adding (xt, yt) and
removing (xr, yr).

KDR uses β∗1 for predictions and monitors the average ‖r‖ across the samples
received since the last model re-computation. If this value is greater than a user-
defined threshold T , we consider it a concept drift and re-compute the model
β∗1 from the samples in the current window. For KDR, the overlap of the sliding
window with the initial window determines the overlap of the training sets for
β∗1 and the hypothetical β∗2 , and ranges from W to 0.

Evaluation We evaluate KDR on one real-world dataset and one synthetic
dataset. SensIT Vehicle [7] is a real-world time-series collected from wireless
distributed sensor networks (WDSN), with labeled classes indicating the vehicle
type. We used the version from the OpenML repository [32] with 98,528 samples
of 100 features each. We used a window size of 200 samples. To simulate fast
concept drifts we “sped up” the data by only using every tenth sample (i.e., only
10% of the data). Rotating Checkerboard, proposed by Elwell and Polikar [8],
is an artificial 2D time-series with examples sampled uniformly from the unit
square and labeled in a 5 × 5 checkerboard pattern. We generated 9 abrupt
concept drifts, where at each concept drift the checkerboard is rotated by an
angle of π/20 radians. The time between drifts is drawn uniformly from 2000 to
8000 samples. The window size is set to 500 samples.

Incremental Sensitivity Analysis for Kernelized Models 13

0 101 102 103

num model computations

60

70
ac

cu
ra

cy

(a) SensIT Vehicle

0 101 102 103

num model computations

60

80

ac
cu

ra
cy

(b) Checkerboard 5× 5

SW
DDM (ISGD)
DDM (batch)
KDR
ISGD

Fig. 3. The tradeoff between accuracy and number of model computations in SensIT
Vehicle and Rotating Checkerboard datasets, for different parameter configurations of
each algorithm. KDR achieves a better tradeoff, showing equal or superior accuracy at
lower computational cost than the other algorithms, across a range of configurations.

We compare KDR to three algorithms: (i) SW, a non-adaptive sliding win-
dow algorithm with a fixed period parameter that determines how often batch
model re-computation is performed; (ii) ISGD, the incremental truncated SGD
proposed by Kivinen et al. [19]; and (iii) DDM [11], a popular concept drift
detector that monitors its base learner accuracy and decides when to update the
model. We use both ISGD and the SW batch learner as the DDM base learner.
All the algorithms have the same window size, which is also the size of the sup-
port vector set for ISGD. We use the first 1000 samples from each stream to tune
the kernel parameters, learning rate, and regularization parameter C. Finally,
we used prequential evaluation [12] to evaluate accuracy.

Since different algorithms have different parameters that control the tradeoff
between accuracy and computational cost (i.e., the period for SW, the drift level
for DDM, and the threshold T for KDR; there is no such parameter for ISGD),
we use tradeoff curves to explore the computation-accuracy of the different al-
gorithms. For each configuration of these parameters, we plot a point with the
resulting accuracy as the Y coordinate and the number of model computations
as the X coordinate. The resulting curve shows how the algorithm behaves as
we change its parameters.

Figure 3(a) shows the tradeoff curves on the SensIT Vehicle dataset. Overall,
the accuracy of sliding window algorithms that use batch learning (SW and
KDR) is superior to that of the incremental learning algorithms (ISGD and
DDM). KDR is able to achieve an accuracy equivalent to the non-adaptive SW
algorithm using far fewer model computations.

Similarly, Figure 3(b) shows the computation-accuracy tradeoff for the Ro-
tating Checkerboard dataset averaged across five runs with different random
seeds (for every seed, all algorithms see the same data); error bars show stan-
dard deviation (in practice, it is very small). KDR achieves the same accuracy
as SW with less computation since it can adapt to unpredictable concepts drifts.
DDM and ISGD are unable to adapt quickly enough, despite substantial tuning.

14 H. Sivan et al.

5 Related Work

Existing work on general sensitivity analysis focuses on linear models without
kernels. Okumura et al. [24], Hanada et al. [13], Gabel et al. [10], and Sivan
et al. [28] all present bounds for the prediction of a linear model when the
training set changes, as well as a bound for the Euclidean distance between
the previously-computed model and the updated model. Okumura et al. suggest
their prediction bounds could be kernelized for non-linear classification prob-
lems, but did not provide details. Steinwart and Christmann [29, Corollary 5.12]
present a bound for the difference between two kernelized models. Their bound,
however, is more limited. Our geometric proof allows us to obtain bounds for
the prediction of a new model, which are critical for several applications (de-
tailed below). Our bounds are incremental, and we show how to incrementally
update kernel weights in linear time. In addition, the bounds are more general,
supporting two optimization problems with different regularization parameters
and number of samples.

For specific applications, there are specialized approaches that reduce ker-
nelized model training.

For distributed learning, Kamp et al. [17] present a bound on the distance
of a local kernelized model maintained by a local learner to the global average
model of all distributed local models. We focus on bounding the differences in a
single model when its training set changes.

For LOOCV, Jaakkola and Haussler [15], Joachims [16], Vapnik and Chapelle
[33], and Zhang [35] provide upper bounds for the LOOCV error, which can be
computed immediately after training the initial kernelized model from the entire
training set. Zhang [35] also provides a bound for the distance between the
prediction of two models whose training sets differ by exactly one sample. We
adapt this bound in Section 4.2 to bound model prediction, and demonstrate
empirically that our prediction bounds perform as well or better in LOOCV.
Moreover, since our bounds support any change in the training set, they can be
used for k-fold cross-validation.

For active learning, the simplest and most commonly used approach is un-
certainty sampling [20]. In this approach, the model is used to estimate which
unlabeled samples are most likely to be misclassified. We show that this ap-
proach can be improved using our bounds when more than one sample is chosen
to be labeled simultaneously.

For online learning, incremental algorithms are often used to update the
model one sample at a time. The challenge of kernelized incremental algorithms
lies in limiting the size of the support vector set, which increases linearly with the
size of the data stream. Kivinen et al. [19] study classical kernelized stochastic
gradient descent (SGD) algorithms. They show that the oldest samples can be
removed from the support vector set with only a small impact on the accuracy of
the model. Orabona et al. [25] present the Projectron algorithm, which is based
on the Perceptron algorithm but requires less memory. While the memory size
of the Projectron algorithm is guaranteed to be bounded, it cannot be predicted
in advance. Wang and Vucetic [34] propose Passive-Aggressive on a budget that

Incremental Sensitivity Analysis for Kernelized Models 15

maintains only a fixed number of support vectors, with several versions that
trade optimality for runtime efficiency. While incremental model updates are
relatively efficient, incremental algorithms can perform poorly on ill-conditioned
problems [2, p. 467], and are less immune to outliers than batch learners (since
only one sample at a time is used for the model update). Instead, we propose a
simple online learning algorithm that uses our bounds to determine when batch
computation should occur, similar to concept drift detection.

Another approach is to use Influence Functions (IF) to provide a proba-
bilistic approximation for the error of model predictions [21, 29]. Conversely, we
focus on providing a general and deterministic bound on both the difference be-
tween the models, as well as the prediction. Our work is also related to transfer
learning [26]. While transfer learning deals with adapting the existing model to
new data, in sensitivity analysis we bound the changes in the model, delaying
the computation of the new model. We view our approach as a precursor for
transfer learning: it determines when transfer learning should be applied.

6 Conclusions

We presented incremental sensitivity bounds for kernelized machine learning
models that evaluate the change in a model and its predictions as the training
set changes. Our bounds require only the already computed model and the dif-
ference in the training set, and can be evaluated in linear time. We empirically
demonstrated the tightness of the bounds, as well as their effectiveness in three
different applications: LOOCV, online learning, and active learning.

References

1. Bottou, L., Lin, C.J.: Support vector machine solvers. In: Large Scale Kernel Ma-
chines, pp. 301–320 (2007)

2. Boyd, S., Vandenberghe, L.: Convex Optimization (2004)
3. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector ma-

chine learning. pp. 388–394. NIPS ’00 (2000)
4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)
5. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for con-

vex optimization. JMLR 17(83), 1–5 (2016)
6. Dua, D., Graff, C.: UCI machine learning repository (2017)
7. Duarte, M.F., Hu, Y.H.: Vehicle classification in distributed sensor networks. J.

Parallel Distrib. Comput. 64(7), 826–838 (Jul 2004)
8. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary en-

vironments. Neural Networks, IEEE Transactions on 22, 1517 – 1531 (11 2011)
9. Fine, S., Scheinberg, K.: Incremental learning and selective sampling via parametric

optimization framework for svm. p. 705711. NIPS01 (2001)
10. Gabel, M., Keren, D., Schuster, A.: Monitoring least squares models of distributed

streams. pp. 319–328. KDD ’15 (2015)
11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:

Brazilian Symposium on Artificial Intelligence. vol. 8, pp. 286–295 (09 2004)

16 H. Sivan et al.

12. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Mach. Learn. 90(3), 317–346 (Mar 2013)

13. Hanada, H., Shibagaki, A., Sakuma, J., Takeuchi, I.: Efficiently monitoring small
data modification effect for large-scale learning in changing environment. In: AAAI
(2018)

14. Hofmann, T., Schlkopf, B., Smola, A.: Kernel methods in machine learning. The
Annals of Statistics 36 (01 2007)

15. Jaakkola, T.S., Haussler, D.: Probabilistic kernel regression models. In: In Pro-
ceedings of the 1999 Conference on AI and Statistics (1999)

16. Joachims, T.: Estimating the generalization performance of an SVM efficiently. pp.
431–438. ICML ’00 (2000)

17. Kamp, M., Bothe, S., Boley, M., Mock, M.: Communication-efficient distributed
online learning with kernels. In: ECML PKDD ’15. pp. 805–819 (2016)

18. Karasuyama, M., Takeuchi, I.: Multiple incremental decremental learning of sup-
port vector machines. p. 907915. NIPS 09 (2009)

19. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Trans. Signal Process. 52(8), 2165–2176 (Aug 2004)

20. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. pp. 3–12. SIGIR ’94 (1994)

21. Liu, Y., Jiang, S., Liao, S.: Efficient approximation of cross-validation for kernel
methods using bouligand influence function. p. I324I332. ICML14 (2014)

22. Maalouf, M., Trafalis, T.B., Adrianto, I.: Kernel logistic regression using truncated
Newton method. Computational Management Science 8(4), 415–428 (Nov 2011)

23. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a compar-
ison of resampling methods. Bioinformatics 21(15), 3301–3307 (05 2005)

24. Okumura, S., Suzuki, Y., Takeuchi, I.: Quick sensitivity analysis for incremental
data modification and its application to leave-one-out CV in linear classification
problems. pp. 885–894. KDD ’15 (2015)

25. Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J.
Mach. Learn. Res. 10, 2643–2666 (Dec 2009)

26. Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22(10), 1345–1359 (2010)
27. Schölkopf, B.: The kernel trick for distances. pp. 283–289. NIPS’00 (2000)
28. Sivan, H., Gabel, M., Schuster, A.: Online linear models for edge computing. In:

ECML PKDD ’19 (2019)
29. Steinwart, I., Christmann, A.: Support vector machines. Springer Science (2008)
30. Tsai, C.H., Lin, C.Y., Lin, C.J.: Incremental and decremental training for linear

classification. pp. 343–352. KDD ’14 (2014)
31. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training

on very large data sets. J. Mach. Learn. Res. 6, 363–392 (Dec 2005)
32. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: Networked science

in machine learning. SIGKDD Explorations 15(2), 49–60 (2013)
33. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines.

Neural Comput. 12(9), 2013–2036 (Sep 2000)
34. Wang, Z., Vucetic, S.: Online passive-aggressive algorithms on a budget. Proceed-

ings of Machine Learning Research, vol. 9, pp. 908–915 (13–15 May 2010)
35. Zhang, T.: Leave-one-out bounds for kernel methods. Neural Comput. 15(6), 1397–

1437 (Jun 2003)
36. Zhang, Y., Yang, Y.: Cross-validation for selecting a model selection procedure.

Journal of Econometrics 187(1), 95 – 112 (2015)

