AutoMon: Automatic Distributed Monitoring for Arbitrary Multivariate Functions

HADAR SIVAN

MOSHE GABEL

ASSAF SCHUSTER

TECHNION Israel Institute of Technology

SIGMOD 2022

Hypothetical Startup: Earthquake Detector App

Warn users seconds before earthquake:

- Continuously collect accelerometer statistics.
 - x^1, \dots, x^k dynamic statistics vectors of size d
- Aggregate data
 - $\bar{x} = \frac{1}{k} \sum_{j=1}^{k} x^{j}$ global average of local vectors

Run through a neural network:

 $f_{nn}(\bar{x}) = W_3 \cdot \tanh\left(W_2 \cdot \tanh\left(W_1 \cdot \bar{x} + b_1\right) + b_2\right) + b_3$

- W_i , b_i network weights
- tanh activation

Computing f_{nn} in Centralized Settings

Straightforward in centralized settings:

def f_nn(x, W1, b1, W2, b2, W3, b3):
return W3 @ tanh(W2 @ tanh(W1 @ x + b1) + b2) + b3

Data is not static!

• What will we do when $x^1 \dots x^k$ change?

f_{nn} Over Geo-distributed Streams

- Can't centralize all updates
 - Limited battery, bandwidth
 - Communication costs x1000s more energy than computation! [Anastasi et al., Ad hoc networks, 2009; Pottie et al., CACM, 2000]
 - Could overwhelm local datacenter
- > $f_{nn}(x^j)$ does not reflect $f_{nn}(\bar{x})$
- \succ Need a **communication-efficient** algorithm for f_{nn}

AutoMon

The first approach for monitoring that is automatic and general:

- Given source code for computing f from data...
- > ...automatically implements a communication-efficient distributed approximation protocol for $f(\bar{x})$
- Reduces communication by up to ×50
- Works on complicated, non-convex f
- No need for math

How AutoMon Works?

Setting

- n nodes with data streams
- Nodes communicate with coordinator

AutoMon's Input:

- Source code for computing f from \bar{x}
- Desired approximation error ϵ


```
def f_inner_product(x):
n = x.shape[0] // 2
u = x[:n]
v = x[n:]
return u @ v
```

AutoMon Protocol Overview

The geometric monitoring protocol

[Alfassi et al., ICDE, 2021; Gabel et al., SIGKDD, 2017; Keren et al., TKDE, 2012]

Collect data,
$$x_0 = \frac{1}{n} \sum x^j$$
, and compute current approximation $f_0 = f(x_0)$
Intuition: send data and update f_0 only if x^j changed "enough"

 \succ Need constraint that guarantees $|f(\bar{x}) - f_0| \leq \epsilon$.

 \succ Find a safe zone: convex set \mathcal{C} such that:

1.

2.

 \mathcal{C}

Protocol in Action

H. Sivan

AutoMon, SIGMOD 2022

Protocol in Action

The Core of AutoMon

> During sync, C must be tailored to f such that $\bar{x} \in C \implies L \leq f(\bar{x}) \leq U$

The magic of AutoMon: finding a good C automatically, using only f's source code.

Finding DC decomposition automatically!

AutoMon, SIGMOD 2022

Automatic DC Decomposition (ADCD)

ADCD-X

f : the function we monitor

ADCD-X

f: the function we monitor \breve{h} : quadratic component, based on λ_X $\breve{g} = f + \breve{h}$

Example: ADCD to Safe-Zone

$$f(x) = \check{g}(x) - \check{h}(x) \qquad \longrightarrow \qquad \mathcal{C} = \left\{ x \mid \begin{array}{c} \check{g}(x) \leq U \\ \check{h}(x) \leq f(x_0) + \nabla f(x_0)^T (x - x_0) - L \end{array} \right\}$$

$$\mathcal{E}(x) = \check{g}(x) - \check{h}(x) \qquad \Longrightarrow \qquad \mathcal{C} = \left\{ x \mid \begin{array}{c} \check{g}(x) \leq U \\ \check{h}(x) \leq f(x_0) + \nabla f(x_0)^T (x - x_0) - L \end{array} \right\}$$

AutoMon, SIGMOD 2022

H. Sivan

Example: ADCD to Safe-Zone

AutoMon, SIGMOD 2022

Convex vs. Concave Difference

The DC Heuristic

Convex difference

Concave difference

✓ Reduces safe zone violations by up to 30%

Optimizations and Correctness Guarantees

- Approximation correctness guarantees:
 - □ For constant *H* and convex/concave functions
 - For others, not guaranteed \rightarrow in practice error is small
- > "Lazy" violation resolution avoids extra syncing
- \succ Optimization on neighborhood of x_0
 - Tradeoff parameter that affects safe zone effectiveness
 - Automatic tuning algorithm

	aray Malaasia faanaa ahay ahay ahay ahaa ahay	Nonders 16,500 EAA, 10 August Na Statistical and a statistical gradient adaptive saming of 16 Statistical gradient	
AutoMon: Automatic E Muli	istributed Me ivariate Funct	tions Technics of Arbitrary	
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>	A summary of the sum o	<text><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></text>	

Evaluation Setup

- Different applications
- One coordinator
- *n* nodes (5 to 1000)
- \succ Vector size d (10 to 200)
- > 1K to 311K datapoints

Applications (Functions & Datasets)

INTRUSION DETECTION + DNN

- KDDCup-99 network data
- 5-layer DNN [512, 64, 32, 16, 8] with ReLU activation

POLLUTION MONITORING + KLD

- Beijing air-quality dataset[Zhang et al, '17]
- \succ KLD, $D_{KL}(P||Q)$, of PM10 and PM2.5

(we also have inner product, quadratic form, MLP, Rozenbrock, ...)

- > One run with specific ϵ
 - □ X axis total sent messages
 - Y axis max error across run

- > Test on a range of ϵ
- AutoMon's trade-off curve of on this data and function

- > Test on a range of ϵ
- > AutoMon
- Centralization: just send all data updates.
 - No error
 - State-of-the-art for sketches (they reduce message size, not number of messages)

- > Test on a range of ϵ
- > AutoMon
- Centralization
- Periodic: send every N updates
 - Non-adaptive
 - The common approach

DNN (intrusion detection)

Value changes **slowly**:

- Periodic wastes messages
- AutoMon is adaptive and communication-efficient
- > 2% comm with low error

Value changes **slowly**:

- Periodic wastes messages
- AutoMon is adaptive and communication-efficient
- 2% comm with low error

Value changes gradually:

- AutoMon performance similar to Periodic
- AutoMon guarantees error, and is adaptive

Value changes **slowly**:

- Periodic wastes messages
- AutoMon is adaptive and communication-efficient
- > 2% comm with low error

Value changes gradually:

- AutoMon performance similar to Periodic
- AutoMon guarantees error, and is adaptive

Value changes quickly:

- Large error in Periodic
- AutoMon is adaptive: smooth, superior tradeoff

AutoMon:

provides equivalent or superior tradeoff to current approaches ...
automatically from source code.

Error-Bandwidth Tradeoff

> AWS experiments:

- Coordinator on us-west-2
- Nodes on us-east-2
- Round trip time = 56ms
- Investigate:
 - 1) Validity of simulation
 - 2) Error-bandwidth tradeoff
 - 3) Estimate reduction in traffic

✓ Similar reduction in messages (0 to 16% error)

Same reduction in messages (0 to 16% error)
Error-BW tradeoff agrees with error-messages tradeoff

AutoMon, SIGMOD 2022

Same reduction in messages (0 to 16% error)
Error-BW tradeoff agrees with error-messages tradeoff
Traffic reduced to 1/3 on average, and up to 98%

H. Sivan

AutoMon, SIGMOD 2022

✓ Same reduction in messages (0 to 16% error)
✓ Error-BW tradeoff agrees with error-messages tradeoff
✓ Traffic reduced to 1/3 on average, and up to 98%

Additional Experiments

H. Sivan

AutoMon, SIGMOD 2022

Related Work

Sampling

- Send only some updates
- Delay warnings
- Miss transients

easy to apply

Distributed Dataflow, Query Planning

- Combine operators
- No built-in operator for f_{nn}

Sketching

- Compress updates, approximate f_{nn}
- No sketch for f_{nn}
- Reduce bandwidth, not number of messages

Geometric Monitoring

- Avoid sending updates
- No bound for f_{nn}
- Devs are not PhDs

hard to apply

AutoMon, SIGMOD 2022

AutoMon vs. Universal Sketches

- Liu et al., One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon, SIGMOD '16
- > Universal sketch: just implement a function $g(x_i)$
- Limited to Stream-PolyLog functions in the turnstile model:
 - $f(x) = \sum g(x_i)$
 - x_i are frequencies
 - g monotonic, bounded by $O(x_i^2)$
- AutoMon supports wider variety of x and f

Summary

- AutoMon: first truly automatic distributed monitor
 - ✓ **Automatic**: Arbitrary functions of \bar{x} .
 - Accessible: Works from source code.
 - Efficient: Superior error-communication tradeoff to existing methods.
- Allows difficult functions without hand-crafted solution
 - For example, for DNN, reduces communication by up to ×50.

Open source: <u>https://github.com/hsivan/automon</u>

hadarivan@cs.technion.ac.il mgabel@cs.toronto.edu assaf@technion.ac.il