AutoMon: Automatic Distributed Monitoring for Arbitrary Multivariate Functions

Hadar Sivan¹, Moshe Gabel², Assaf Schuster¹
¹Technion – Israel Institute of Technology, ²University of Toronto

Motivation
Distributed monitoring of arbitrary functions

Earthquake detection from mobile-phone accelerometer data

Intrusion detection

and more...

The Problem
Communication is costly...
Need a communication-efficient algorithm!

What about sketches or geometric monitoring algorithms?
Need an expert to develop a sketch/bound for every individual function!

Entropy

Variance

Least squares

Most SW developers don’t have a PhD in computer science.

Our Solution: AutoMon
Given source code for computing f from data and desired approximation error, automatically implements a communication-efficient distributed approximation protocol for $f(\bar{x})$.

Protocol Overview
Setting: n nodes with local data streams that communicate with coordinator.

Input: f’s source code and approximation error ϵ.

AutoMon adopts the Geometric Monitoring protocol:

- Full sync: coordinator finds local constraint and updates nodes.
- Monitor: Nodes monitor the local constraint with local data.

AutoMon’s Core
Find local constraints automatically

- Automatic differentiation
- Numerical optimization
- DC decomposition
- DC heuristic

Why AutoMon?
- Reduces communication by up to $\times50$
- Works on complicated, non-convex f
- No need for math

Results

- Error-communication tradeoff. AutoMon provides equivalent or superior tradeoff to current approaches.

- Bandwidth usage in distributed experiments. Traffic volume was reduced by up to 98%, depending on ϵ.

`def f(x):
...`

Approximation Error ϵ

\bar{x} : average of local data

Communication-efficient distributed approximation protocol for $f(\bar{x})$