

AutoMon: Automatic Distributed **Monitoring for Arbitrary Multivariate Functions**

Hadar Sivan¹, Moshe Gabel², Assaf Schuster¹

¹Technion – Israel Institute of Technology, ²University of Toronto

Motivation

Distributed monitoring of arbitrary functions

Earthquake detection from mobile-phone accelerometer data

Intrusion detection

The Problem

Communication is costly... Need a communication-efficient algorithm!

What about sketches or geometric monitoring algorithms? Need an expert to develop a sketch/bound for every individual function!

and more...

Our Solution: AutoMon

Given **source code** for computing *f* from data and desired approximation error, automatically implements a communication-efficient distributed approximation protocol for $f(\bar{x})$.

Protocol Overview

Setting: *n* nodes with local data streams that communicate with **coordinator**.

Input: *f*'s source code and approximation error ϵ .

Results

Error-communication tradeoff. AutoMon provides equivalent or superior tradeoff to current approaches.

